

Ireland's Low-Carbon Opportunity:

an analysis of the costs and benefits of reducing greenhouse gas emissions

Technical Appendix

July 2009

Please do not reproduce or disseminate contents without permission

Introduction – context of the cost curve project

- There is a pressing need for a better understanding of how we can meet our policy goals (and binding targets) for GHG reduction
- We believe this study can make an important contribution by using a coherent framework across all sectors of the Irish economy to present a 'big picture' analysis in a way that is easy to understand
- The analysis is not policy-prescriptive but it cuts across many sectors, many interests and policy responsibilities. The cost-curve report does not address all our knowledge gaps; indeed, it actually highlights some new ones. SEI therefore regard it as work-in-progress rather than an end-product.
- We would like to offer thanks to all those who helped in bring the work to this point, particularly the ESB who co-funded it.
- We look forward to continued collaboration with interested parties.

- The Ireland GHG abatement cost curve has been developed based on the proven methodology of McKinsey's global GHG abatement cost curve. The Ireland specifics are created through consultations with over 80 Irish stakeholders and experts from all sectors
- The GHG abatement cost curve is an approach to assess technical abatement opportunities relative to a "business as usual" emissions development scenario. It does examine emission reduction potential and associated cost for each opportunity. The cost curve is based on a societal perspective and does not include behavioural abatement opportunities.

A GHG MAC curve can be used for...

- Constructing an integrated perspective on abatement potential and opportunities to be compared with a given target CO₂e emissions level
- Order of magnitude evaluation and prioritization of abatement measures within and across sectors
- Providing a fact base to support the assessment of possible regulatory arrangements

A GHG MAC curve can NOT be used for...

- Definition of target CO₂e concentration level to solve climate change issues
- Forecasting exact CO₂ prices or CO₂ regulation, or determining the technical or economic feasibility of policy targets
- Forecasting individual technologies while there is a view on learning rates and volume development for individual technologies, in the database, the value of this work is its comprehensive scope more than the depth in individual technologies

How to read and use this document

- This document contains the outputs, key insights, sector details, and detailed assumptions for the Ireland greenhouse gas (GHG) abatement cost curve
- The document contains this material in three parts:
 - Executive summary includes a summary of the key insights from the Ireland Cost Curve and background pages for each of these insights
 - Sector detail includes an overview of each sector and background details for the scenario analysis
 - Assumptions and methodology highlights the cost and volume assumptions use for each of the sector abatement opportunities. It also includes sources for assumptions and notes on the methodology

Contents

Executive summary (key insights)	page 5
 Sector detail Overall Power Transport Buildings Industry Agriculture LULUCF Scenario analysis 	page 4 page 20 page 33 page 42 page 57 page 66 page 77 page 88
 Assumptions and methodology Overall Glossary Power Transport Buildings Industry Agriculture LULUCF 	page 99 page 105 page 106 page 124 page 136 page 145 page 152 page 157
 Acknowledgements 	page 161

Ireland 2030 GHG abatement cost curve¹

1 Baseline cost curve based on 2007 IEA energy price forecasts (~60 USD / barrel in 2030) and a cost of capital of 4%

Summary of insights (1/2)

- 1. As a result of current economic conditions, Business As Usual (BAU) emissions take a dip but are expected to trend slightly upwards, growing at 0.1% p.a. compounded from 65.6 MtCO₂e in 2005 to 66.5 MtCO₂e in 2030
- The Ireland cost curve for 2020 indicates total abatement opportunities below 80 €/t of 13.2 MtCO₂e. This opportunity more than doubles to 28 MtCO₂e by 2030. Additional abatement opportunities from EVs and other new generation technologies (which are more expensive than 80 €/t) increase opportunity to 30 MtCO₂e
- 3. Realizing full potential by 2030 will reduce abatements relative to BAU by 42%
- 4. In 2030, the top ten abatement levers deliver over 60% of the 2030 abatement potential
- 5. In 2030, power leads delivery of abatement with 11.1 MtCO₂e (40% of total) but all other sectors need to contribute to realize Ireland's full abatement potential
- In some cases, there is complex interplay across sectors. For example, the 11.1 MtCO₂e of power abatement in 2030 includes 3.1 MtCO₂e of demand reduction in buildings and industry. In addition, there is an increase of 0.2 MtCO₂e of emissions from electric vehicles, a transport sector lever for the same period
- 7. Ireland's 2030 cost curve identifies 42% of "negative cost" abatements. This compares to 29% globally, 35% in the Australia and 40% in the UK (although those country studies had a somewhat lower cut-off for acceptable marginal abatement cost). Barriers must be addressed if Ireland is to achieve its "negative cost" potential.

Summary of insights (2/2)

- 8. 46% of total abatement opportunities are from sectors covered under the EU ETS. However, the ETS sectors only contribute 33% of emissions and therefore account for a larger relative share of abatement than non-ETS businesses
- 9. The abatement cost can vary significantly depending on fuel prices. A scenario of oil at \$120 a barrel increases the 'negative cost' potential by ~60% to ~16 MtCO₂e (from 10 MtCO₂e in the base case). In addition, the order of the cost curve changes as different abatement opportunities are affected to differing degrees depending on their relative fuel intensity (with regards to the reference technology that would represent business-as-usual)
- 10. Behavioural levers could add significant reductions beyond the technical potential. We have preliminarily identified ~3-4 MtCO₂e of additional abatement opportunity (i.e., up to a further 10% reduction to post-abatement emissions) from behavioural levers, primarily in the transport and buildings sectors. However, issues with permanence and verification will need to be addressed, and further research into the full range of behavioural options performed

Ireland Business as Usual (BAU) scenario growth based on projections for drivers of each sector

BAU reference scenario

- BAU reference scenario includes the emissions for modelled sectors which are based on key drivers:
 - Energy use in residential and commercial buildings (Buildings)
 - Vehicle fleet mix projection, distance travelled forecasts, and biofuel penetration projection (Transport)
 - Electricity demand and generation mix (Power)
 - Home building projections and GDP (Industry/ cement)
 - Animal herd and farm land projections (Agriculture)
 - Afforestation projection and available land (Forestry)

1 Representing sectors currently covered by Ireland GHG cost curve. See slide 105 for a comparison with EPA's emissions projections 2 Emissions in 2030 are based on extrapolations from various sources for each sector

2 Ireland GHG abatement cost curve 2020

Ireland 2030 GHG abatement cost curve¹

1 Baseline cost curve based on 2007 IEA energy price forecasts (~60 USD / barrel in 2030) and a real cost of capital of 4%

3 Potential post abatement pathway could deliver 45% reduction in emissions

MtCO₂e per year

4 Largest 10 levers could deliver >60% of the abatement

	Abatement	opportunities ¹	, 2030
--	-----------	----------------------------	--------

Abatement opportainties , 2000		Lever	
Lever	Abatement potential, Mt CO ₂ e	cost, €/tCO ₂ e	Description
Onshore wind	4.1	15	 Including both high penetration and low penetration wind
Coal CCS new build	3.2	50	 Replacement of Moneypoint with CCS coal plant
Afforestation	3.0	30	 Increasing national forested area
Residential new build efficiency package	2.8	-20	 Improved new build building energy efficiency
Residential retrofit building envelope	1.1	-44	 Level 1 retrofit - "basic retrofit" package: attic and wall cavity insulation; weather strip doors and windows
LDV gasoline bundle 4	1.1	-12	 Fuel efficiency improvement for internal combustion engines
Second-generation biofuels	1.0	11	 Sustainable biofuels used to displace petrol and diesel use in the transport sector
Plug-in hybrid EVs	0.9	45	 Plug in electric vehicles that displace gasoline and diesel passenger vehicles (have both electric and ICE drive trains)
Residential retrofit building envelope, pkg 2	0.8	53	 Additional retrofit building improvements including high efficiency windows, doors, and high passive solar
Offshore wind	0.8	61	 Including both high penetration and low penetration wind

1 Not including organic soils restoration which may not be credited in the UNFCCC inventory

5 Abatement potential by sector relative to BAU reference scenario

Ireland 2030 GHG emissions and sector abatement potential $\mbox{Mt}\ \mbox{CO}_2\mbox{e}$

There are the sector and indirect changes non-power use in other

5 The sectoral breakdown of emissions after abatement would be significantly different from the current breakdown

1 Representing sectors currently covered by Ireland GHG cost curve

SOURCE: EPA UNFCCC 2006 GHG inventory; Ireland GHG Abatement Cost Curve

6 There are complex interactions across sectors

Ireland 2030 power sector emissions MtCO₂e

7 Although Ireland has more negative cost abatements than global average, barriers to realizing these abatements exist

9 Effect of high energy prices (oil price at \$120 a barrel)

1 UK NBP wholesale price (Stg£) plus gas network costs to Ireland. BAU gas price equates to €22.00/MWh (Gross Calorific Value).

Examples of potential behavioural changes beyond technical abatement measures (1/2)

MtCO₂e per year; 2030

Calculation assumptions¹

1 Behavioural effects accounted for after implementation of all other levers

SOURCE: Ireland GHG Abatement Cost Curve, Global GHG Abatement Cost Curve v2.0

Examples of potential behavioural changes beyond technical sector abatement measures (2/2)

MtCO₂e per year; 2030

1 Behavioural effects accounted for after implementation of all other levers

SOURCE: Ireland GHG Abatement Cost Curve, Global GHG Abatement Cost Curve v2.0

Contents

Executive summary (key insights)

Sector detail

- Power
- Transport
- Buildings
- Industry
- Agriculture
- LULUCF
- Scenarios
- Assumptions and methodology

Power Sector summary

BAU	 Power sector emissions totalled 15.7 Mt CO₂e in 2005¹ Under a business as usual (BAU) scenario, emissions could fall slightly to 15.5 Mt CO₂e by 2030 The primary driver of emissions growth is increased electricity demand Lower average CO₂ intensity through increased generation from renewables and imports, and the high proportion of gas-fired generation, limits emissions growth
Abatement potential	 Onshore wind represents Ireland's biggest abatement opportunity from renewables of 4.0 MtCO₂e due to high load factors (~30-35%) and the large number of available sites. It is also the least expensive abatement lever at low penetrations at 9 €/MtCO₂e. However, the costs of onshore wind could increase by up to 24 €/MtCO₂e as capacity grows due to additional capacity credit costs and lower load factors Offshore wind can achieve better load factors (~40%) than onshore wind but higher capex and opex will ensure that it remains a less attractive opportunity. Abatement will be limited to 0.8 MtCO₂e by 2030 Wave and tidal energy represent technologies that are in early stages of development, requiring extensive R&D / prototyping, and that have high costs per tonne of CO2 abated (100 -140 €/MtCO2e). By 2030, they will contribute 0.3 MtCO2e of abatement Ireland's three peat plants could technically co-fire 30% of their fuel mix with biomass which would reduce emissions by 0.6 MtCO₂e. Low capital expenditure requirements make it a very attractive opportunity at 21 €/MtCO₂e. However, this lever does not occur after 2025 due to assumption that peat plants are retired in 2025 and replaced with wind New coal CCS technology could provide 3.2 MtCO2e of abatement if installed on a newly-built 900MW plant. For one possible geographic arrangement (Moneypoint as the capture site and Kinsale gas field as the storage site) the abatement cost is calculated at 50 €/MtCO2e Coal co-firing with biomass offers 0.6 MtCO₂e but is an expensive lever due to the large difference in fuel prices (83 €/MtCO₂e)
Implications	 Onshore wind is the most cost effective GHG abatement lever and will be vital to any GHG abatement strategy However, other renewable technologies could also be developed, especially offshore wind which will provide higher abatement as fewer suitable onshore sites become available High levels of intermittency on the grid due to increased wind capacity could pose some technical challenges for the grid operator

1 Based on IPCC inventory for process emissions, and model assumptions regarding energy use

Power

Power sector contributed 20% of total Ireland 2007 emissions

1 Calculations use GWP conversion factors of 21 for CH4 and 310 for N2O

National Energy Forecast¹ shows increasing electricity demand over the next 20 years

1 Adjusted for increased contracted wind capacity

Power

The National Energy Forecast baseline corresponds to UNFCCC reporting, therefore only includes legislated measures. It does not represent a projection of Ireland's generation portfolio in 2030, but provides a useful reference scenario for the cost curve

The cost curve BAU scenario does not account for additional policy measures designed to ensure security of supply and fuel diversity

24

Renewables

Peat Coal

Gas

Electricity Imports

BAU reference scenario electricity demand

Power

Power sector emissions will be driven by electricity demand and the CO₂ intensity of the fuel mix

Source and notes

- National energy forecasts
- Annual growth rate from 2025–30 extrapolated from National energy forecasts to

Power Power sector emissions BAU projections

BAU reference scenario is based on National Energy Forecast baseline scenario and adjusted for an 'Economic Shock' scenario. It includes:

- Wind capacity growth to 1413MW¹ in 2010 and no further increase
- Decommissioned plants modelled are:
 - Tarbert (590MW)
 - Marina (27MW)
 - Great Island (216MW)
 - Poolbeg (1&2)
 - Aghada (270)
- New plants modelled are:
 - Aghada (CCGT 431)
 - Whitegate (CCGT 445)
 - Quinn (CCGT 400)
 - Interconnector (2x500MW)
 - OCGT (200 MW)
 - CCGT (400MW)
- Moneypoint opens a new 1000MW plant in 2025 with higher efficiency
- It is assumed that other gas plants due to retire before 2030 (e.g. North Wall) are replaced with equivalent gas plants

1 National Energy Forecast includes 1261MW which has been updated to correspond with Eirgrid's current capacity total for contracted wind farms

1

2

Baseline scenario

- Nuclear power remains prohibited under current legislation
- Onshore wind is the principal renewable abatement lever but increases in cost as penetration grows
- New onshore wind connections are limited to 400MW/year
- Adoption of co-firing biomass is currently quite low (5-10% in one of three plants). However, the ending of the PSO encourages all of Ireland's three peat plants to begin cofiring from 2015 to 2025
- Peat plants are retired in 2025 and replaced by onshore wind
- Moneypoint is replaced by a new 900MW CCS plant¹ in 2025
- Offshore wind becomes viable in 2015 with a maximum of 1,000MW installed by 2030
- Tidal energy becomes viable in 2015 with 113MW installed by 2030
- One large wave installation (154MW), installed in 2025 Tawnaghmore example taken from All-Island Grid study

Nuclear scenario

- Assuming Oireachtas removes legislative prohibition and approves new legislation to permit nuclear
- One 600MW station is built to replace the retiring Moneypoint station in 2025
- Load factor for nuclear plant is 75% lowered due to increased level of wind on the system
- Other renewable abatement levers remain the same as baseline scenario
- Generation from renewables is limited to the same level as the baseline scenario (52%) due to network constraints

The rate of adoption of renewable generation is based on an assumption of new and replacement asset investment

It does not fully reflect what may be achieved by means of policies designed to encourage strategically important new technologies such as wave and tidal power

Nuclear power brings other non-GHG related challenges:

- Disposal of harmful nuclear waste
- Increased safety risks

1 Build of a 900MW CCS plant is based on a scenario from 'Assessment of the Potential for Geological Storage of CO₂ on the Island of Ireland'

Demand change due to energy efficiency and electric vehicles

Electricity demand change 2030 TWh

Societal perspective

1 Onshore/offshore wind low penetration represents under 4000MW of total wind capacity on the grid

Ireland 2030 power sector emissions Mt CO_2e

1 Apart from wave and tidal power, abatement potential only includes levers under 80 €/tCO₂e, excluding co-firing coal with biomass

2 Nuclear scenario – power sector abatement cost curve

Societal perspective; 2030

Power

Ireland 2030 power sector emissions $Mt\ CO_2e$

Electricity generation fuel mix under abatement scenarios

Contents

- Executive summary (key insights)
- Sector detail
 - Power
 - Transport
 - Buildings
 - Industry
 - Agriculture
 - LULUCF
 - Scenarios
- Assumptions and methodology

Transport **Sector summary**

BAU	 Road transport emissions totalled 11 Mt CO₂e¹ in 2005 rising to 17 Mt CO₂e in 2030 Irish registered passenger cars (53%) and goods vehicles under 16 tonnes (36%) accounted for 89% of these emissions Growth will be driven by increasing population, GDP and car ownership per adult
Abatement potential	 Abatement potential of over 5 Mt CO₂e exists in 2030 The largest levers are Improvements for LDV Gasoline ICE engines (~2 Mt CO₂e) Electric vehicles (~1.5 Mt CO₂e) 2nd generation biofuels (~1 Mt CO₂e)
Implications	 Significant abatement opportunities are reliant on continued development of internal combustion engine (ICE) improvement bundles Development of EV will require support in the medium term as they are not expected to be directly cost competitive with ICE technologies (although EV cost will reduce in the high energy price scenario)
Transport Road transport sector contributed 20% of total Ireland 2007 emissions

Not included

1 Assumed residual 10% of emissions, consistent with fuel tourism estimates e.g. Mid Term Review 2008 2 Includes ~0.8 mt CO2e aviation and rail

Transport A number of drivers of emissions have been considered . . .

Driver forecast

Notes / source

- Vehicle numbers are based on population and GDP (ESRI) growth
 - LDV are driven by population growth up and an increase of car ownership per adult to 0.7 by 2030
 - MDV / HDV are driven by GDP growth

 Average km travelled are based on NCT data for LDV's and European averages (IEA) for MDV's and HDV's

- Small decline in LDV km driven (0.7% / year) assumed to continue to 2030 as car ownership rates increase
- Without specific abatement technologies some decrease in emissions per km are assumed over the next 3 years
- LDV emissions levels are tested emissions levels and must be scaled up to on the road emissions
- MDV / HDV are on the road emission levels

Transport

... leading to a business as usual emissions projection

- BAU emissions projection includes forecasts of vehicle numbers in the LDV, MDV and HDV categories along with changes in KM driven and average emission per KM
- Minimal penetration of abatement levers is assumed in the BAU case e.g. biofuel generation 1 (2.2%), LDV Gas bundle 1 (3%) etc
- Buses, motorcycles, rail, aviation and marine are all excluded
- Fuel tourism does not feature, as emissions are calculated based on km travelled by Irish vehicles

1 Adjusted for fuel tourism (~1.4 mt CO2e) and domestic aviation (~0.7 mt CO2e) and rail, buses, motorcycles and marine (~0.8 mt CO2e)

Transport Transport sector abatement cost curve – 2030

Societal perspective; 2030

1 Costs assume no premium on locally produced biofuels, and full incremental battery cost for plug-in hybrid and EVs passed on by non-Irish manufacturers

Transport **Sector emissions projections**

MtCO2e per year

Ireland 2030 transport sector emissions $Mt\ CO_2e$

1 Emissions accounted for in power sector

Transport Transport sector abatement cost curve – 2020

Societal perspective; 2020

Contents

- Executive summary (key insights)
- Sector detail
 - Power
 - Transport
 - Buildings
 - Industry
 - Agriculture
 - LULUCF
 - Scenarios
- Assumptions and methodology

Buildings Sector summary

BAU	 Buildings accounted for 10.2 MtCO₂e in 2005 73% Residential 27% Commercial Energy use is forecast to increase but emissions in buildings remain stable until 2020 due to a change in fuel mix to lower CO₂e intensity fuels 			
Abatement potential	 There is an abatement potential in 2030 for 9.1 MtCO₂e 6.1 direct emissions 2.9 indirect emissions 6.2 MtCO₂e residential 2.9 MtCO₂e commercial The top 3 levers are New build efficiency package residential (2.8 MtCO₂e) Retrofit building envelope package 1 - residential (1.1 MtCO₂e) Retrofit building envelope, package 2 - residential (0.8 MtCO₂e) 			
Implications	 The majority of the abatement opportunities in buildings are cost negative there are a number of reasons why they have not been implemented already High consumer discount rate applied to capex Principal / agent issues Access to finance 			

Buildings Buildings contributed 14% of total Ireland 2007 emissions

Buildings

We have developed a business as usual projection based on residential completions and GDP

2005 emissions

- Energy usage for 2005 taken from the National Energy Forecasts
- SEI emissions factors assumed for each fossil fuel type (tCO₂e / MWh)
 - Coal 0.34
 - Oil 0.27
 - Gas 0.20
 - Other 0.39
- Electricity emissions come from cost curve analysis of the power sector

BAU projection

- Residential completion rates based on SEI data
 - 22,500 completions in 2010 rising to 40,000 in 2014 and stabilizing
 - Average new build assumed to be
 - 130 m2
 - 150 kWh / m2
 - Building life of 60 years
- Commercial growth based on GDP growth (ESRI 'credit crunch' projections, adjusted)
- 2008 building regulations are not included in our BAU
- Regulations on incandescent light bulb use are not included in our BAU
- Rationale: consistency with National Energy Efficiency Action Plan

Buildings Business as usual emissions projection

Direct and indirect emissions

Direct emissions only

Buildings Buildings sector abatement cost curve

Societal perspective; 2030

Buildings Buildings sector abatement levers – residential

Buildings Buildings sector abatement levers – commercial

1 Regulations on incandescent light bulb use are not included in our BAU

6

-€9

Average

13

Buildings

Description of abatement levers in buildings sector – residential

New build efficiency package	 Achieve energy consumption levels comparable to passive housing (40 kWh / M2) Reduce demand for energy consumption through improved building design and orientation Improve building insulation and airtightness; improve materials and construction of walls, roof, floor, and windows Ensure usage of high efficiency HVAC and water heating systems
Retrofit building package, level 1 and level 2	 Level 1 retrofit - "basic retrofit" package (improve average dwelling to 175 kWh / m2 or C2 BER) Improve building airtightness by sealing baseboards and other areas of air leakage Weather strip doors and windows Insulate attic and wall cavities Level 2 retrofit Incremental improvement to 150 kWh / m2 (C1 BER) Potential improvements include window replacement, external insulation or internal dry lining
Retrofit HVAC, residential	 When current gas / oil furnaces or boilers expire, replace with the highest efficiency model, with AFUE (annual fuel utilization efficiency) rating above 95 Replace electric furnace with high efficiency electric heat pump Reduce energy consumption from HVAC and AC through improved maintenance Improve duct insulation to reduce air leakage and proper channeling of heated and cooled air Ensure HVAC system is properly maintained, with correct level of refrigerant and new air filters
Retrofit water heating systems	 When existing standard gas water heaters expire, replace with solar water heater, or with tank less / condensing models When existing electric water heater expires, replace with solar water heater or electric heat pumps
New and retrofit lighting systems	 Replace incandescent bulbs with LEDs Replace CFLs with LEDs
New and "retrofit" appliances and electronics	 Purchase high efficiency consumer electronics (e.g., PC, TV, VCR / DVD, home audio, set-top box, external power, charging supplies) instead of standard items When refrigerator/freezer, washer / dryer, dishwasher, and fan expires, replace with high efficiency model

Buildings

Description of abatement levers in buildings sector – commercial

New build efficiency package	 Reduce demand for energy consumption through improved building design and orientation Improve building insulation and airtightness; improve materials and construction of walls, roof, floor, and windows Ensure usage of high efficiency HVAC and water heating systems 			
Retrofit building envelope	 Level 1 retrofit - "basic retrofit" package (~50 kWh / m2 energy improvement) Improve building air tightness by sealing areas of potential air leakage Weather strip doors and windows 			
Retrofit HVAC and HVAC controls, residential	 When HVAC system expires, install highest efficiency system Improve HVAC control systems to adjust for building occupancy and minimize re-cooling of air 			
Retrofit water heating systems	 When existing standard gas water heaters expire, replace with tankless gas, condensing gas, or solar water heater When existing electric water heater expires, replace with heat pump or solar water heater 			
New and retrofit lighting systems	 Replace incandescent bulbs with LEDs Replace CFLs with LEDs Replace inefficient T12s / T8s with new super T8s and T5s New build – install lighting control systems (dimmable ballasts, photo-sensors to optimize light for occupants in room) Retrofit – install lighting control systems (dimmable ballasts, photo-sensors to optimize light for occupants in room) 			
New and "retrofit" appliances and electronics	 Use high efficiency office electronics (e.g., printer, copier, fax) instead of standard items For food service / grocery, use high efficiency refrigerators / freezers 			

Buildings Sector emissions projections

MtCO2e per year

1 Indirect emissions accounted for in the power sector

Buildings Buildings sector abatement cost curve

Ireland 2030 buildings sector emissions $Mt\ CO_2 e$

1 Direct emissions only

2 Indirect emissions accounted for in the power sector

Buildings Buildings sector abatement cost curve

Societal perspective; 2020

Buildings Buildings sector abatement cost curve table (1/2)

1 Includes behavioural element

Buildings Buildings sector abatement cost curve table (2/2)

Contents

- Executive summary (key insights)
- Sector detail
 - Power
 - Transport
 - Buildings
 - Industry
 - Agriculture
 - LULUCF
 - Scenarios
- Assumptions and methodology

Cement and other industry **Sector summary**

Business-as- usual reference scenario, 2030	 Cement industry emissions totalled 3.8 Mt CO₂e in 2005¹ 5% of total Irish emissions 67% due to process emissions (from producing clinker) BAU emissions rise at annual rate of 0.25% from 2005 to 2030, to 4.0 Mt Cement production forecasts are projected in three phases Constant through 2010 In line with house completion forecasts from 2010 to 2020 From 2020 to 2030, at previous decade's CAGR for house completions Key drivers: clinker content and emissions intensity of kiln fuels Other industry emissions totalled 10.7 Mt CO₂e in 2005 (6.7 direct, 4 indirect)
Abatement opportunities	 Total cement opportunity: 1 Mt Abatement volume limited by existing efficiencies at relatively new Irish plants Clinker substitution (by limestone and blast furnace slag): 0.6 Mt Alternative fuels (e.g. waste, biomass): 0.4 Mt Other industry opportunities: 1 Mt Motor systems efficiencies affect indirect emissions, are reflected in the power sector
Implications	 Cement opportunities depend on inputs from other industries, so cross-sectoral coordination and planning is critical (i.e. production facilities for alternative fuels, and licenses to burn them; import availability of slag and other materials; specifications for cements with lower clinker content; transportation and processing requirements) Market dynamics among the three main producers can define uptake rates Most cement abatement levers have negative cost per tonne of CO₂e abated From -€48 / t for limestone substitution, to €2 / t for alternative fuels - biomass Significant abatement opportunities for other industries exist in ETS and non-ETS

Cement and other industry
Industry contributed 15% of total Ireland 2007 emissions

Cement and other industry

BAU cement projections are based on production levels

Description of BAU reference scenario

BAU reference scenario includes:

- 5.25 Mt cement produced in 2005, projected using Ireland house completion forecasts
- Domestic production assumed to displace imports due to 2008 capacity increase at Platin
- Increased use of clinker substitution materials
- Maintained current levels of alternative fuels for process heating needs

Cement and other industry

BAU projections for other industrial sectors

Description of BAU reference scenario

- BAU direct emissions reference scenario includes:
 - Total industry direct emissions – cement direct emissions
 - Growth rates proportional to industry electricity consumption estimates from National Energy Forecasts
- BAU indirect emissions reference scenario includes:
 - Total industry electricity consumption – cement electricity consumption
 - Growth rates proportional to industry electricity consumption estimates from National Energy Forecasts

* Assumes material availability. Does not account for emissions from transportation or effects in other national markets.

** Uses conservative high cost estimate from global cost curve analysis.

Source: Ireland GHG Abatement Cost Curve

Cement and other industry Description of key levers

Abatement opportunities in cement and other industry, 2030

A Lever M	batement potential, tCO ₂ e	Cost of lever, € / tCO ₂ e	BAU implementation, 2030	Abatement case implementation, 2030	Implementation description
Process optimisation	0.69	20.05	• 0%	• 100%	 % of industrial sites taking optimisation steps
Cement: clinker sub by slag	0.30	-7.97	• 0%	• 7%	 % of clinker replaced by slag
Cement: clinker sub by limestone	0.28	-48.29	• 7%	• 10%	 % of clinker replaced by limestone
Motor systems efficiency	0.23	-40.06	• 10%	• 100%	 % of industrial sites taking motor systems efficiency steps
Cement: alt. fuels - bio	0.23	2.40	• 0%	• 25%	 Biomass as % of total fuel use
Cement: alt. fuels - waste	0.19	-7.14	• 5%	20%	 Waste as % of total fuel use
СНР	0.06	-13.60	• 0%	15%	 % of total electricity usage generated by CHP
Total	1.98				UTF

Cement and other industry Cement and other industry sector emissions projections MtCO₂e per year

Contents

- Executive summary (key insights)
- Sector detail
 - Power
 - Transport
 - Buildings
 - Industry
 - Agriculture
 - LULUCF
 - Scenarios
- Assumptions and methodology

Agriculture Sector summary

Business-as- usual reference scenario, 2030	 Agriculture emissions totalled 18.6 Mt CO₂e in 2007: 27% of Ireland total BAU forecasts emissions fall at annual rate of 0.34% from 2007 to 2020, to 17.8 Mt Emissions assumed constant from 2020 to 2030 Key drivers: Livestock caused 76% of 2007 total; cattle numbers to fall by 11% Fertiliser caused 20% of 2007 total; nitrogen fertiliser application to fall by 5%
Abatement opportunities	 Total identified abatement opportunities: 0.6 Mt Biggest opportunity: 0.28 Mt, from grassland nutrients (slurry) and management (clover), at costs ranging from -€65 to €9 per tonne of CO₂e abated Livestock levers have 0.3 Mt potential, at negative cost, due to increased animal productivity and less expense on food
Implications	 Limited abatement opportunity results from regional variations in soil conditions and farming practices, according to Teagasc and the Department of Agriculture Therefore only low implementation rates are possible Research is necessary High levels of uncertainty around new technologies, e.g. livestock vaccines Permanence and MRV (measuring, reporting & verifying) are challenges in agriculture, requiring strong incentives and regulatory intervention Emissions tracked by levels of inputs/outputs (e.g. fertiliser sales, head of cattle), meaning no "credit" is currently given for abatement achieved via farming practises Current accounting systems mean that many abatements pursued by farmers, such as forestry or microgeneration of power, are "credited" in other sectors and therefore more difficult to incentivise Ireland's unique mix of agricultural activities and resources positions the sector for a potential global leadership role

Agriculture **Agriculture contributed a 26% of total 2007 GHG emissions**

Breakdown of 2007 GHG agriculture emissions¹, Mt CO₂e

1 Calculations use GWP conversion factors of 21 for CH_4 and 310 for N_2O 2 Included in BAU projections, but not subject to any abatement reductions

Agriculture Business-as-usual forecasts include recent and anticipated policy developments from Irish and EU level

SOURCE: Ireland GHG Abatement Cost Curve

Agriculture Declining emissions are driven by livestock and land NOT EXHAUSTIVE

71

Source

Agriculture Grasslands account for more than 90% of agricultural land use

Agriculture Business-as-usual projections show a decline in agriculture emissions

Description of BAU reference case

- Reference case uses latest forecasts from EPA and Teagasc, and will project to 2030
- Trends include:
 - Fluctuations in livestock numbers and fertiliser use
 - Effects of prices, demand and legislation
- BAU emissions are assumed constant from 2020 to 2030 due to high uncertainty in agricultural policies

1 Follows Irish EPA forecasts (March '09 revision) to 2020, assumes constant emissions to 2030

Agriculture **Description of agriculture levers**

Top abatement levers in Irish agriculture, 2030

1 Levers for reduced till & residue management, and for agronomy, are not included in cropland totals or cost curve results due to high cost per t CO₂e 2 Teagasc, Department of Agriculture, expert interviews

Agriculture Sector emissions projections

MtCO₂e per year

Contents

- Executive summary (key insights)
- Sector detail
 - Power
 - Transport
 - Buildings
 - Industry
 - Agriculture
 - LULUCF
 - Scenarios
- Assumptions and methodology

LULUCF Sector summary

Business-as- usual reference scenario, 2030	 LULUCF emissions totalled -1 Mt CO₂e in 2007 Forestry acted as a carbon sink, absorbing -1.5 Mt BAU forecasts an increase in negative forestry emissions from 2007 to 2020, to -4.4 Mt This trend plateaus and then reverses in 2030 due to historic planting activity Key drivers: afforestation rate, currently 8 kha / year
Abatement opportunities	 Total identified abatement opportunities: 3.7 Mt Biggest opportunity: 3.0 Mt from afforestation at cost of €30 per tonne of CO₂e abated Organic soils restoration has 0.6 Mt potential, at cost ranging from €27 to €201 (includes 0.3 Mt potential from restoring farmed peatland at high cost)
Implications	 Further research is necessary High levels of uncertainty around organic soils restoration Permanence and MRV (measuring, reporting & verifying) are challenges in LULUCF, requiring strong incentives and regulatory intervention Due to the age profile of planted forest, future sequestration potential is subject to past afforestation rates, which must be increased in order to sustain the current carbon sink Restoration is assumed to meet the ecologically sensitive requirements of Special Areas of Conservation, Areas of Scientific Interest, and national parkland; and to have no impact on agricultural output due to >10% declines that are forecast in grazing animal numbers

LULUCF

Forestry contributed a 1.5 Mt reduction in 2007 GHG emissions while land-use change added 0.5 Mt

Includes wetlands and settlements

** May vary from Kyoto Protocol reporting

Source: EPA UNFCCC emissions inventory; Expert interviews

LULUCF Peatland is estimated to cover between 14% and 25% of Ireland's Second Second

- Recent research has determined that peatland covers more area than previously thought
 - From 950,000 to 1.7m hectares
 - 'New' peatland is due to counting of small drumlin-based areas, which are not included in abatement analysis
- Bogs are predominantly located in the midlands and west
 - Around 400,000 hectares are either intact or not in significant economic use

LULUCF Restoration of impacted peatland has the potential to contribute significantly to abatement efforts

Irish peatland distri '000 hectares	ibution, 2007	Description	% of peatland eligible for 2030 restoration	
Grassland	210 3,337		Pasture, hay and silage	75%
Cropland	379		Cereals, vegetables, fruit, horticulture	n/a
Forest	1 70 - 264		Principally commercial forestry	0%
Bord na Mona	80		40 kha actively harvested	0%
Other impacted peat	254		Remainder after other uses and intact	75%
Intact peat	143		15% of total peatland	0%
Other land	1,666		Developed land, roads, bodies of water, etc.	n/a

- Only 'Other impacted peat' and 'Grassland peat,' covering more than 400 kha, are considered eligible for restoration
- 'Other impacted peat' is assumed to have no economic use besides small-scale turf-cutting

LULUCF Afforestation and peatland restoration cause slight changes in the Irish land-use mix

- Full implementation of abatement measures accelerates a marginal shift away from pasture, and reassigns degraded bog as peatland
- Incremental afforestation of 12.0 kha / year assumed to start in 2010, for total rate of 20 kha / year
- Abatement numbers for each year are cumulative

LULUCF LULUCF BAU forecast based on 2007 emissions from forestry

Description of BAU reference scenario

- Uses afforestation rate of 8,000 hectares / year, and the harvesting scenario cited as most probable by COFORD/FERS
- Sequestration rates are forecast to plateau after 2030 and drop thereafter, due to the timing of when trees have previously been planted

LULUCF sector abatement cost curve - 2030

* Peatland that does not support significant economic activity – excludes peatland that is afforested or held by Bord na Mona

** Contingent on 20,000Ha/annum of land being available for afforestation – further research is required to verify this assumption Source: Ireland GHG Abatement Cost Curve

LULUCF Description of LULUCF levers

Lever	Abatement potential, MtCO ₂ e	Average cost of lever, €/t CO₂e	BAU implementation, 2030	Abatement case implementation, 2030	Emissions reduction potentials
Afforestation	3.0	30.00	 8,000 ha / year 	 20,000 ha / year 	 11.3 t CO₂ / ha / year 556 t / ha (over 50 years)
Organic soils	0.3	27.23	• 0%	■ 75%*	 Rewetted bog becomes carbon sink absorbing 2.0 tCO₂e / ha / yr
Biomass on cropland	0.2	11.01	 0 ha / year 	 1,000 ha / year 	 8.85 t CO₂ / ha / year
Forest management	0.1	10.75	 0 ha / year 	 50,000 ha / year 	 2.69 t CO₂ / ha / year
Avoided deforestation	0.1	5	 500 ha / year deforested 	 400 ha / year deforested 	 0.05 Mt CO₂ total potential savings
Total	3.7	7			

* Scaled back from 90% to account for unsuitable areas on bog perimeters, due to impact on adjacent land that is in use Source: Ireland GHG Abatement Cost Curve

LULUCF Organic soils: global overview

 Restoring organic soils represents a very large abatement opportunity globally, at low cost

- 1.14 Gt of CO₂e abatement in 2030
- 3% of total abatement, one of top ten levers
- Cost of €4.5 / t CO_2e
- Broad range of scientific estimates of potential CO2e absorption per hectare
 - Intergovernmental Panel on Climate Change provides a wide range of estimates for absorption potential in cool climates (mean = 33.5 t / ha / yr)
 - Reviewed by leading climate change experts
- Uncertainty due to unpredictable impact of various environmental factors
 - Temperature, soil chemistry, underlying geology
 - Extent and age of damage / draining
 - Difficulty in reflooding in a uniform fashion
- Abatement gains are due to once-off carbon sinks that can take decades to reach saturation
 - Uncertain how inventories account for this

IPCC estimates of CO_2e absorption by restored organic soils in cool climates t CO_2 / ha / yr

LULUCF Organic soils: Irish overview

A unique feature of the Irish landscape

- Peatland = 14% of total land area, ~1m ha, almost all has been impacted
- Lower cost than elsewhere because less bog has been converted to cropland
- Using a conservative sequestration estimate (2 t / ha / yr) subject to ongoing developments in Irish research
 - Some scientific opinion suggests that negative potential remains a short- or medium-term possibility due to CH₄ emitted by microbes in peat

Costs attributable to equipment and labour

- Blocking drainage ditches, raising water table, seeding native flora
- Monitoring fluxes of CO₂ and CH₄
- Restoring peat from grassland includes cost of 100-year use of the land
- Current research should provide more specific numbers by early 2010
 - Bogland project, UCD
 - Coillte, Bord na Mona

Contents

- Executive summary (key insights)
- Sector detail
 - Power
 - Transport
 - Buildings
 - Industry
 - Agriculture
 - LULUCF
 - Scenarios
- Assumptions and methodology

Oil price sensitivity B

Investor cost sensitivity

Behavioural lever estimation

Nuclear scenario (covered in power sector)

A The EU-ETS sector contributes 33% of emissions

Lighting, electronics and appliances (residential and commercial)

Abatement cost

A Overview of EU-ETS/non-ETS sectors

GHG emissions, MtCO₂e

1 Does not include 'not-accounted' for levers

B Effect of high energy prices (oil price at \$120 a barrel)

1 Includes gas transport costs from UK to Ireland

C Effect of investor decision perspective on cost curve

SOURCE: Ireland GHG Abatement Cost Curve

Examples of potential behavioural changes beyond technical abatement measures (1/2)

MtCO₂e per year; 2030

Calculation assumptions¹

1 Behavioural effects accounted for after implementation of all other levers 2

SOURCE: Ireland GHG Abatement Cost Curve, Global GHG Abatement Cost Curve v2.0

Examples of potential behavioural changes beyond technical sector abatement measures (2/2)

MtCO₂e per year; 2030

1 Behavioural effects accounted for after implementation of all other levers

SOURCE: Ireland GHG Abatement Cost Curve, Global GHG Abatement Cost Curve v2.0

Contents

- Executive summary (key insights)
- Sector detail

Assumptions and methodology

- Overall
- Power
- Transport
- Buildings
- Industry
- Agriculture
- LULUCF

How is a marginal abatement cost curve built?

BAU reference scenario methodology

- Allocate Ireland 2006 emission inventory to sectors
- 2 Determine emissions increase due to key sector drivers to calculate emissions projections to 2030
- 3 Determine emission reductions included in the BAU such as on-going trends (e.g. efficiency improvements) and specific proposals with high likelihood of success (e.g. specific legislation not including general targets)
- Evaluate additional abatement potential and costs relative to BAU reference scenario

How do you read a marginal abatement cost curve?

- The cost curve displays abatement potential, and corresponding cost, for each abatement lever relative to a "BAU reference scenario"
- The merit order is applied based on the cheapest measures in 2030 in EUR/tCO₂e

How are the costs calculated?

Marginal abatement cos	$= \frac{[\text{Full cost of CO}_2\text{e efficient alternative}] - [\text{Full cost of reference solution}]}{[\text{CO}_2\text{e emissions from reference solution}] - [\text{CO}_2\text{e emissions from alternative}]}$
Full cost includes	 Operating costs, incl. personnel/materials costs Investment costs calculated with economic amortization period and capital costs (like a repayment of a loan) Possible cost savings generated by the actions (e.g., energy savings)
Full cost does not include	 Transaction costs Communication/information costs Subsidies or explicit CO₂ costs Taxes Consequential impact on the economy (e.g., advantages from technology leadership)
Other assumptions	 Abatement cost for new technologies are consistently compared to the specific cost and emission intensity of displaced alternatives Full costs could be negative, i.e., indicating a net benefit deriving from the use of the alternative Technology is phased in on a new and replacement basis

Review of key points on the abatement cost curve

Cost curve methodology	Description
Point in time perspective	 The cost curve is defined for a given year Gives a picture of technical abatement potential in that year related to the reference (Business As Usual) scenario The potential abatement is dependent on actions taken between 2010 and the given year The Ireland cost curve will use 2020 and 2030 as output years
Societal perspective	 Cost curve is based on a "societal" or "cost to economy" perspective rather than a "decision maker" perspective Cost of capital used is in line with financing of public projects (4% real)¹
Abatement cost	 Cost of reducing one tonne of CO₂e relative to the reference BAU scenario Is levelised cost including investment and opex and subtracting savings (e.g. from reduced energy consumption) Does not include transaction costs, taxes, subsidies, communication/information costs or broader economic benefits (e.g. technological leadership)
Technical potential	 Cost curve assesses economic potential of technical measures under 60 €/tonne Technologies that are currently available or under development are included Behavioural abatement opportunities are not included

1 Base case modelling with effect of decision-maker cost of capital discussed afterwards

Comparing the EPA emissions projections and the cost curve

Glossary

2nd generation biofuels - low-carbon fossil-fuel **ICE** – internal combustion engine replacements, made from non-food sources such **Indirect emissions** – CO2e emitted as a result of as switchgrass (e.g. not maize) electricity consumption CAGR – compound annual growth rate **kWh** – kilowatt-hour CCS – carbon capture and storage **LDV** – light-duty vehicle CO2e - carbon dioxide equivalent Load factors – percentage usage for power stations **Direct emissions** – CO2e emitted 'on site,' e.g. by LULUCF - land-use, land-use change, and forestry. burning fuel or processing raw materials in a A UNFCCC emissions category residential/commercial building or industrial site MAC - marginal abatement cost Envelope packages 1 and 2 – bundles of home **MDV** – medium-duty vehicle insulation products Mt – megatonne (1 million tonnes) **ETS** – (European Union) emissions trading scheme **MWh** – megawatt-hour (1,000 kWh) **EVs** – electric vehicles N2O - nitrous oxide. GWP = 310Gasoline bundles 1-3 – ranges of efficiency **T5-T12 lighting** – range of fluorescent light bulbs improvements for traditional petrol-based engines **TWh** – terawatt-hour (1,000,000,000 kWh) **GDP** – gross domestic product **UNFCCC** – United Nations **GHG** – greenhouse gas **WACC** – weighted average cost of capital Gt – gigatonne (1 billion tonnes) **GWh** – gigawatt-hour (1,000,000 kWh) GWP - global warming potential. Conversion factors for CO2, CH4 and N2O are 1, 21 and 310, respectively HDV - heavy-duty vehicle **HESS** – SEI's Home Energy Saving Scheme HVAC - heating, ventilating and air-conditioning

Contents

- Executive summary (key insights)
- Sector detail
- Assumptions and methodology
 - Overall
 - Power
 - Transport
 - Buildings
 - Industry
 - Agriculture
 - LULUCF

Required N+R generation

- Occur due to plant retirements or increased demand
- N+R generation is calculated from equation below:

Total required N+R generation = (TWh)	Increase in BAU generation demand relative to previous period (TWh)	+	Demand change from other sector models (TWh)	+	Total plant retirements forecast for period (TWh)
---	--	---	--	---	---

- A specific selection order is used to decide what levers are used to fill required N+R generation
- Each lever is limited by a maximum available volume potential (MWh)
- As there is excess onshore wind potential then newer technologies are prioritised in the selection order (to ensure the curve is not filled with only onshore wind)
- Selection order
 - 1. Wave (available for 2030)
 - 2. Tidal (available for 2020)
 - 3. Offshore wind
 - 4. Onshore wind
- If required N+R generation cannot be filled by abatement levers, it is assumed that the plant type operating at marginal cost (gas) fills this demand

Specific generation alternatives

- Peat co-firing of biomass occurs at all three of Ireland's peat plants from 2015–25
- Peat plants are retired in 2025 and replaced by onshore wind
- Coal CCS built at the Moneypoint site to replace the retiring plant
- Nuclear scenario built at the Moneypoint site to replace the retiring plant instead of a coal CCS plant

Power Power calculation methodology

Overall

- Reference generation is based on the plant/fuel being replaced relative to the BAU reference scenario
- Abatement potential based on new and replacement (N+R) of retiring plants
- Demand reduction affects projected imported generation before reducing gas generation
- Two types of abatement opportunity: excess demand and specific scenarios

Volume Potential abatement volume (tCO ₂ e)	= Power generation volume X (MWh)	Ref CO2 intensity (Mt CO2e/MWh - Lever CO2 intensity (Mt CO2e/MWh
Cost Abatement cost	Cost of abatement generation (€/MWh)	- Cost of reference generation (€/MWh)
(€/tCO₂e)	Reference generation emission intensity (tCO ₂ e/MWh)	Abatement generation - emission intensity (tCO ₂ e/MWh)

Lever	Details and assumptions	Values 2005	2020	2030	Source
Combined cycle gas turbine (CCGT)	 Overall Reference case will be new build CCGT gas plant Grid can accommodate less flexible generation BAU assumes new build plants projected for completion are Whitegate, Aghada, Quinn and another 400MW plant 				Validated with industry expert Validated with industry expert ESRI – Baseline Scenario
	 Volume CO₂ intensity, tonne/MWh 		0.38	0.37	NERA: Market Simulation Data and Model Validation, P. 36 (MtCO ₂ e/GJ) / efficiency
	 Load factor, % 	65	65	65	CER, Impact of High Levels of Wind Penetration in 2020 on the SEM, P.29
	 Efficiency (HHV), % 	52	53	54	IEA WEO 2008 – converted to HHV efficiency
	Cost ■ Capital costs, €/MW	677	677	677	Best New Entrant 2006
	 Fuel costs – reference scenario, €/MWh Fuel costs – high oil price scenario, €/MWh 	32.2 n/a	37.2 66.0	38.2 71.8	IEA WEO 2007/2008 + additional transport costs (€0.9/MWh) divided by efficiency
	 Operations and Maintenance Variable, EUR/MWh Fixed, EUR/MW 	3 10,200	3 10,200	3 10,200	UK Department of Trade and Industry, 'The Energy Challenge', P.194/95
	 Economic lifespan, years 	25	25	25	Expert interviews

Lever	Details and assumptions	Values			Source
		2005	2020	2030	
Open cycle gas turbine (OCGT)	 Overall Used in the calculation of additional capacity costs for renewable technologies Onshore wind Offshore wind Wave Additonal 200MW installed as part of BAU 				ESRI – Baseline Scenario
	Volume				
	 CO₂ intensity, tonne/MWh 	0.58	0.58	0.58	All-Island Grid Study Workstream 2A, P.13
	 Load factor, % 	10	10	10	Assumption based on industry interviews
	 Efficiency (HHV), % 	31	31	31	All-Island Grid Study Workstream 2A, P.13 converted to HHV efficiency
	Cost ■ Capital costs, €/MW	400	400	400	All-Island Grid Study Workstream 2A, 13
	 Fuel costs, €/MWh 	54.1	63.1	67.2	IEA WEO 2007 UK + additional transport costs (€0.9/MWh) divided by efficiency
	 Operations and Maintenance Variable, EUR/MWh Fixed, EUR/MW 	2 8,000	2 8,000	2 8,000	Assumptions based on expert interviews
	 Economic lifespan, years 	25	25	25	Expert interviews

Lever	Details and assumptions	Values			Source
		2005	2020	2030	
Coal plant	 Overall Used as the reference scenario for coal CCS and nuclear 				
	Volume				
	 CO₂ intensity, tonne/MWh 	0.86	0.77	0.72	NERA: Market Simulation Data and Model Validation, P. 36 (MtCO ₂ e/GJ) / efficiency
	 Load factor, % 	85	80	70	Assumption based on high wind penetration by 2030
	 Efficiency, % 	40	45	48	Expert interviews
	Cost ■ Capital costs, m €/MW	1.981	1.981	1.981	All-Island Grid Study Workstream 2A, P.13
	 Fuel costs – reference scenario, €/MWh Fuel costs – high oil price scenario, €/MWh 	17.1 n/a	13.3 26.6	13.1 23.5	IEA WEO 2007 IEA WEO 2008
	 Operations and Maintenance Variable, EUR/MWh Fixed, EUR/MW 	2 35,000	2 35,000	2 35,000	Assumptions based on expert interviews All-Island Grid study Workstream 2A, P.13
	 Economic lifespan, years 	30	30	30	All-Island Grid study Workstream 2A, P.13

Lever	Details and assumptions	Values			Source
		2005	2020	2030	
Peat plant	 Overall Used as the reference scenario for 'peat to wind' lever and co-firing with biomass 				
	Volume				
	 CO₂ intensity, tonne/MWh 	1.06	1.06	1.06	NERA: Market Simulation Data and Model Validation, P. 36 (MtCO ₂ e/GJ) / efficiency
	 Load factor (%) 	84	84	84	All-Island Grid Study Workstream 2A, P.13
	 Efficiency (%) 	36	36	36	National Energy Forecasts
	Cost ■ Capital costs, m (€/MW)	1.69	1.69	1.69	All-Island Grid Study Workstream 2A, P.13
	 Fuel costs (€/MWh) 	40	40	40	Industry expert interviews
	 Operations and Maintenance Variable (EUR/MWh) Fixed (EUR/MW) 	2 55,000	2 55,000	2 55,000	Industry expert interviews All-Island Grid study Workstream 2A, P.13
	 Economic lifespan (years) 	30	30	30	All-Island Grid study Workstream 2A, P.13

Power Assumptions

Lever	Details and assumptions	Values			Source
		2005	2020	2030	
Coal co-firing biomass	 Overall Assumed that 115MW of biomass could be co-fired at Moneypoint Assumes that this would occur in 2025 when a new plant with CCS is built 				SEI – 'Co-firing with biomass'
	Volume Emissions intensity, t CO ₂ e/MWh	0	0	0	
	Maximum volume, MW	N/A	115	115	SEI – 'Co-firing with biomass, P.43
	Load factor, %	N/A	70	70	Assumption – based on high wind penetration by 2025
	Cost Fuel costs, €/MWh	N/A	65	62	Interview with industry player and industry expert price projection
	Operations and maintenance, €/MWh	N/A	2	2	
	Capital expenditure, €/MW	N/A	125,470	125,470	industry, 'The Energy Challenge', P.194/95 - £100,000 £/MW converted to EUR

Power Power abatement lever assumptions

Lever	Details and assumptions	Values			Source
		2005	2020	2030	
Onshore wind	 Overall No wind generation is spilt and load factors do not decrease with additional capacity due to technology improvements 				Validated with industry players
	 Two tiers of wind are included (0, <3GW, 3GW+) to account for higher capacity costs 				Assumption
	Volume Emissions intensity, tCO ₂ e/MWh	0	0	0	
	New build maximum limit, MW/year	400	400	400	Assumption based on Eirgrid previous capacity projections – Generation Adequacy Report
	Low penetration load factor, %	32	32	32	CER 'Impact of High Levels of Wind Penetration in 2020 on the SEM'. P.29
	High Penetration load factor, %	28	28	28	Expert interviews
	Cost Capital costs in €/MW	1.3	1.22	1.11	All-Island Grid Study P.16 current cost (2005) + capex reduction rate from expert interviews
	Operations and Maintenance, €/MW	51,900	36,700	29,100	All-Island Grid Study Workstream 1, P.38, + reduction rate from expert interviews
	Economic lifespan, year	20	20	20	All-Island Grid Study Workstream 2A, P.16
	Incremental capcacity costs due to high wind penetration ¹ , €/MWh				
	 Tier 1: 0–4,000MW 	13	13	13	Capacity costs calculated by estimating the cost
	 Tier 2: 4,000MW + 	15.4	15.4	15.4	(average of CCGT and OCGT) for the difference in capacity credit between a conventional plant and windfarm. Tier 1: Capacity credit used – 3,000MW Tier 2: Capacity credit used – 5,000MW All-Island Grid Study 2A, P.21

Power Assumptions

Lever	Details and assumptions	Values			Source
		2005	2020	2030	
Offshore wind energy	 Overall Assumed that Arklow bank project is completed by 2020 Assumed that another 500MW windfarm is built by 2030 Relatively low penetration is assumed due to continued attractiveness of onshore wind 				Interviews with industry players suggest that 500MW is the minimum size to ensure that a windfarm is profitable
	Volume Emissions intensity, t CO ₂ e/MWh	0	0	0	
	Maximum volume, MW	30	500	1000	Assumption based on expert interviews
	Load factor	40%	40%	40%	Expert interviews
	Cost Economic lifetime	20	20	20	All-Island Grid study, Workstream 2A, P.13
	Capital costs, m €/MW	2.5	1.96	1.88	Current price estimate + capex reduction rate applied from expert interviews
	Operations and maintenance, $(000^{\circ}s)$, \in /MW Incremental capacity costs due to high level	104	75.4	64.8	All-Island Grid Study + Workstream 1, P.38 Note: <u>€ 104,000/MW</u> (load factor x hours) + projected cost decreases from expert interviews
	 0–4,000 MW 4000 + MW 	15 17.2	15.1 17.2	15.4 17.2	See onshore wind lever

Power Assumptions

Lever	Details and assumptions	Values			Source
		2005	2020	2030	
Peat co-firing biomass	 Overall All of Ireland's peat plants can co-fire with up to 30% biomass Assumes that all 3 peat plants convert to co-firing by 2015 and plants are closed in 2025 				SEI – 'Co-firing with biomass'
	Volume Emissions intensity, t CO ₂ e/MWh	0	0	0	
	Maximum volume, MW	N/A	105	0	30% of total peat capacity (351MW) – Powerplatts 2009
	Load factor, %	N/A	84	0	All-Island Grid Study 2A, P.13
	Cost Fuel costs, €/MWh	N/A	65	0	Interview with industry player and industry expert price projection
	Operations and maintenance, €/MWh	N/A	2	0	Interview with industry player
	Capital expenditure, €/MW	N/A	17,241	0	Assumption based on interview with industry player

Power Assumptions

Lever	Details and assumptions	Values			Source
		2005	2020	2030	
Tidal energy	 Overall A total volume of 113 MW of accessible tidal energy exists for Ireland Technological challenges not as great as wave A pilot study of 35 MW completed in 2020 Assumed that all 113 MW implemented by 2030 				All-Island Grid study, Workstream 1, P.234
	Volume Emissions intensity, t CO ₂ e/MWh	0	0	0	
	Installed capacity, MW	0	35	113	All-Island Grid Study – Workstream 1, P.234 Assumed all ROI projects implemented by 2030
	Load factor	N/A	27%	27%	JHR Hampson C. Eng Call for evidence to House of Lords 2008 – Select Committee on Economic Affairs
	Cost Total generation cost, €/MWh	N/A	102.9 ¹	102.9	All-Island Grid study – Workstream 1, P.234 Table A92 Note: Average cost (€/MWh) calculated for all ROI projects at a cost of capital of 8%, number recalculated to have a cost of capital at 4%
	Operations and maintenance, €/MWh	N/A	15.8	15.8	Economic viability of a simple tidal stream energy capture device DTI Project No: TP/3/ERG/6/1/15527/REP
	Capital expenditure, €/MWh	N/A	87.1	87.1	Estimate – total minus O&M

1 Total average cost is assumed across all installations. Installations built initially will have higher capital and operations costs

Power Assumptions

Lever	Details and assumptions	Values			Source
		2005	2020	2030	
Wave energy	 Overall Assumed that only one large wave installation is completed by 2030 Tawnaghmore site chosen as this installation Technology is likely to still face significant technical challenges in 15-20 years time 				
	Volume Emissions intensity, t CO ₂ e/MWh	0	0	0	
	Maximum volume, MW	0	0	154	All-Island Grid Study, Workstream 1, P.214, Table A8.8
	Load factor	N/a	N/a	35%	Expert interviews
	Cost Capital costs, m €/MW	N/A	N/A	2.4	World Energy Outlook power generation cost assumptions
	Operations and maintenance, (000's) €/MW	N/A	N/A	144	World Energy Outlook Power generation cost assumptions
	Additional capacity costs, €.MWh	N/A	N/A	7.70	For given load factor, assumed to be half the capacity costs of equivalent wind project interviews – see onshore wind lever high penetration

Power Assumptions

Lever	Details and assumptions	Values			Source
		2005	2020	2030	
Coal CCS new build	 Overall Lever based on a scenario where 900MW coal CCS is installed to replace current Moneypoint plant in 2025 Scenario considers Kinsale gas field as the CO₂ storage site 				SEI/EPA: Assessment of the Potential for Geological Storage of CO_2 for the Island of Ireland
	Volume Emissions intensity, % of equivalent coal emissions	N/A	N/A	20%	SEI, CO ₂ capture and storage in Ireland, P.6, Table 2
	Maximum volume, MW	0	0	900	SEI/EPA: Assessment of the Potential for Geological Storage of CO_2 for the Island of Ireland
	Load factor	N/A	N/A	70%	Assumption – based on high wind penetration in 2025
	Cost				
	Economic lifetime	N/A	N/A	30	All-Island Grid study Workstream 2A, P.13 – coal plant
	Capital costs, m €/MW	N/A	N/A	3.21	Assessment of the Potential for Geological Storage of CO ₂ for the Island of Ireland, P.69 Note: € 2.893 m/900MW
	Operations and maintenance				
	 Fixed , €/MW Variable, €/MWh 	N/A N/A	N/A N/A	37,800 2.8	Expert interviews
	Fuel costs, €/MWh	21.4	16.1	15.7	World Energy Outlook 2007 divided by efficiency ¹
	Transport and storage costs, €/t CO₂e	N/A	N/A	17	Expert interviews, based on purely hypothetical route from Moneypoint to Kinsale

1 Assessment of the Potential for Geological Storage of CO2 for the Island of Ireland assumes coal price of \$90/tonne, IEA forecast for 2030 is \$61/tonne

Power Assumptions

Lever	Details and assumptions	Values			Source
		2005	2020	2030	
Nuclear	 Overall Lever dependent on current legislation changing to permit nuclear power Scenario assumes that nuclear plant replaces the current Moneypoint plant in 2025 				Expert interviews
	Volume Emissions intensity, t CO ₂ e/MWh	0.01	0.01	0.01	Interviews with industry players
	Maximum volume, MW	0	0	600	Interviews with industry players
	Load factor,%	75	75	75	Validated with industry players assumes relatively low load factor due to high levels of wind capacity
	Efficiency, %	34	35	37	Expert interviews
	Cost Economic lifetime	40	40	40	Expert interviews
	Capital costs¹, m €/MW	3	2.9	2.8	Expert interviews
	Operations and maintenance, €/MWh	16.5	16.5	16.5	Expert interviews
	Fuel costs, €/MWh	5	4.77	4.62	Expert interviews

1 Includes decommissioning costs and waste removal costs that are assumed to be 10% of construction costs

Power Demand change due to energy efficiency and electric vehicles

Electricity demand change 2020 TWh

Power **Power sector abatement cost curve – 2020**

Societal perspective

Ireland 2020 power sector emissions $Mt\ CO_2e$

Contents

- Executive summary (key insights)
- Sector detail
- Assumptions and methodology
 - Overall
 - Power
 - Transport
 - Buildings
 - Industry
 - Agriculture
 - LULUCF

Sales penetration mix LDV, %

Sales penetration of						
abatement levers	2005	2010	2015	2020	2025	2030
Gasoline Bundle 1	0	3	25	20	0	0
Gasoline Bundle 2	0	2	13	9	0	0
Gasoline Bundle 3	0	0	7	25	20	0
Gasoline Bundle 4	0	0	0	16	40	52
Gasoline Full Hybrid	0	0	3	8	18	25
Gasoline Plugin Hybrid	0	0	7	15	15	15
Electric Cars	0	0	3	8	8	8
Diesel Bundle 1	0	12	30	24	0	0
Diesel Bundle 2	0	4	15	13	0	0
Diesel Bundle 3	0	0	7	20	13	0
Diesel Bundle 4	0	0	0	29	64	68
Diesel Full Hybrid	0	0	3	8	15	20
Diesel Plugin Hybrid	0	0	0	3	8	10
Compressed Natural Gas	3	1	1	1	1	2

Increased cost of electric vehicles is driven by the battery costs

Approximate cost breakdown for VW Golf equivalent in 2013 Dollars

Transport BAU reference assumptions

BAU	Details and assumptions	Values 2005	2020	2030	Source
	Emissions (LDV) Fuel economy – Petrol (L / 100km) - Diesel (L / 100km) Emissions - Petrol (gCO2e / km) ¹ - Diesel (gCO2e / km) Emission intensity - Petrol (gCO2e / L) - Diesel (gCO2e / L)	9.64 7.76 172 208 2422 2683	9.02 7.23 152 194 2422 2683	9.02 7.23 152 194 2422 2683	IEA energy statistics (Ireland assumed same fuel consumption as UK – validated with Irish interviews – Dept of Transport, Comhar)
Sales penetration	Lever	Values 2005	2020	2030	Source
	LDV Gas bundle 1 (%) LDV Gas bundle 2 (%) LDV Gas bundle 3 (%) LDV Gas bundle 4 (%) LDV Diesel bundle 1 (%) LDV Diesel bundle 2 (%) LDV Diesel bundle 3 (%) LDV Diesel bundle 4 (%) LDV Gas full hybrid (%) LDV Gas plug in hybrid (%) LDV Electric vehicle (%) Bioethonal Generation 1 (%) Biodiesel Generation 2 (%)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 2 0 12 4 0 0 0 0 0 1 0 1 0	3 2 0 12 4 0 0 0 0 0 0 0 1 0 1 0	Expert interviews No BAU reference case abatement through MDV and HDV ICE bundles

1 Drive cycle emissions for new car sales in 2005, increased by 30% to account for on the road conditions and increased emissions of the fleet relative to new sales – this is consistent with Irish average fuel consumption estimates by Authentic

SOURCE: Deutsch Bank: Electric cars: plugged in; Natixis: Car makers/SRI

Overall methodology

- Technological learning curve assumed
- Extra cost when compared with ICE and PHEV is driven by battery expense
- CO2e intensity of electricity is average of the post abatement average and the marginal fuel (wind)
- Aggressive government 10% fleet penetration target by 2020 is achieved (7% PHEV, 3% EV) with 20% penetration in 2030
- Stock and flow model used with a vehicle life (and battery life) of 15 years

Lever	Details and assumptions	Values 2005	2020	2030	Source
Electric vehicles	Abatement Penetration (% sales) CO2e intensity of electricity (CO2e / MWh) KWh per km Emissions (GCO2e / km) ²	0 N/A N/A N/A	8 0.24 ¹ 0.25 117	15 0.15 ¹ 0.25 75	Assuming 10% fleet penetration EV target by 2020, expert interviews (20% in 2030) Power sector outputs Expert interviews Based on above assumptions
	Cost Incremental vehicle cost driven by battery cost (€ / vehicle)	N/A	8000	6000	" Various – see acknowledgements section

1 Discounted societal electricity cost and reduced electricity CO2 intensity reflects the assumption of predominantly night-time charging of batteries 2 On the road emissions rather than test emissions

Transport Plug in hybrids abatement opportunities assumptions

- Technological learning curve assumed
- Extra cost over ICE is driven by battery and multiple drivetrains (electric and ICE)
- CO2e intensity of electricity is average of the post abatement average and the marginal fuel (wind)
- Aggressive government 10% fleet penetration target by 2020 is achieved (7% PHEV, 3% EV) with 20% penetration in 2030
- Stock and flow model used with a vehicle life (and battery life) of 15 years

Lever	Details and assumptions	Values 2005	2020	2030	Source
Plug in hybrids	Abatement Penetration (% sales) CO2e intensity of electricity (CO2e/Mwh) Kwh per km % time driving electric Fuel economy (I/100km) Emissions (GCO2e/km) ¹	0 N/A N/A N/A N/A	15 0.24 0.25 66 5.02 118	25 0.15 0.25 66 5.02 90	10% EV target, expert interviews Power sector outputs Expert interviews Expert interviews TNO Institute of Environmental Sciences, California EPA, press search, expert interviews
	Cost Incremental vehicle cost driven by battery cost (less than EV) and drivetrain duplication (EUR/vehicle) Cost of electricity (EUR/ kWh) (avoided fuel cost - 67% during night-time)	N/A NA	4600 0.024	3200 0.024	Various – see acknowledgements section Power sector outputs

Transport Full hybrids abatement opportunities assumptions

- Technological learning curve assumed
- Stock and flow model used with a vehicle life of 15 years

Lever	Details and assumptions	Values 2005	2020	2030	Source
Full hybrids	Abatement Penetration (% sales) Emissions (GCO2e/km) ¹	0 N/A	8 121	25 121	Expert interviews TNO Institute of Environmental Sciences, California EPA, press search, expert interviews
	Cost Incremental vehicle cost (EUR / vehicle)	N/A	2535	1848	Rocky Mountain Institute

Transport Biofuel abatement opportunities assumptions

- Technological learning curve assumed
- Ireland assumed to import most of our biofuel needs
 - Therefore global biofuel prices assumed
- 2nd Generation begins to displace 1st Generation after 2025
- Biofuel abatement potential considered for petrol-fueled LDV category only

Lever	Details and assumptions	Values 2005	2020	2030	Source
Biofuel	Abatement Ethanol generation 1 - Emissions (gCO2e / joule) - Penetration (%) Ethanol generation 2 - Emissions (gCO2e / joule) - Penetration (%)	N/A 0 N/A 0	26 7 25 7	26 3 25 20	National renewable energy laboratory (NREL) "Biofuels – a vision for 2030 and beyond" Expert interviews
	Cost Ethanol generation 1 (EUR / L) Ethanol generation 2 (EUR / L)	0.228 0.243	0.228 0.243	0.228 0.243	National renewable energy laboratory (NREL)

Transport LDV ICE bundle 1 abatement opportunities assumptions

- Technological learning curve assumed
- Stock and flow model used with a vehicle life of 15 years
- Applies to passenger cars only

Lever	Details and assumptions	Values 2005	2020	2030	Source
LDV Gasoline bundle 1	Abatement Emissions - Petrol (gCO2e / km) ¹ - Diesel (gCO2e / km) ¹ Sales penetration - Petrol (%) - Diesel (%)	N/A N/A 0 0	189 171 20 24	N/A N/A O O	TNO Institute of Environmental Sciences (NL), California EPA, press search, expert interviews Expert interviews
	Cost Incremental cost (€ / vehicle) - Petrol - Diesel	N/A N/A	239 1158	N/A N/A	TNO report, California EPA, press search, expert interviews

Transport LDV ICE bundle 2 abatement opportunities assumptions

- Technological learning curve assumed
- Stock and flow model used with a vehicle life of 15 years
- Applies to passenger cars only

Lever	Details and assumptions	Values 2005	2020	2030	Source
LDV Gasoline bundle 2	Abatement Emissions - Petrol (gCO2e / km) ¹ - Diesel (gCO2e / km) ¹ Sales penetration - Petrol (%) - Diesel (%)	N/A N/A 0 0	164 156 9 13	N/A N/A O O	TNO Institute of Environmental Sciences (NL), California EPA, press search, expert interviews Expert interviews
	Cost Incremental cost (€ / vehicle) - Petrol - Diesel	N/A N/A	866 1400	N/A N/A	TNO report, California EPA, press search, expert interviews

Transport

LDV ICE bundle 3 abatement opportunities assumptions

- Technological learning curve assumed
- Stock and flow model used with a vehicle life of 15 years
- Applies to passenger cars only

Lever	Details and assumptions	Values 2005	2020	2030	Source
LDV Gasoline bundle 3	Abatement Emissions - Petrol (gCO2e / km) ¹ - Diesel (gCO2e / km) ¹ Sales penetration - Petrol (%) - Diesel (%)	N/A N/A 0 0	149 136 25 20	N/A N/A 0 0	TNO report, California EPA, press search, expert interviews Expert interviews
	Cost Incremental cost (€ / vehicle) - Petrol - Diesel	N/A N/A	1393 1856	N/A N/A	TNO report, California EPA, press search, expert interviews

Transport

LDV ICE bundle 4 abatement opportunities assumptions

- Technological learning curve assumed
- Stock and flow model used with a vehicle life of 15 years
- In abatement case all sales in 2020 are either Hybrid, electric or ICE bundle 4
- Applies to passenger cars only

Lever	Details and assumptions	Values 2005	2020	2030	Source
LDV Gasoline bundle 4	Abatement Emissions - Petrol (gCO2e / km) ¹ - Diesel (gCO2e / km) ¹ Sales penetration - Petrol (%) - Diesel (%)	N/A N/A 0 0	134 126 16 29	134 126 52 68	TNO report, California EPA, press search, expert interviews Expert interviews
	Cost Incremental cost (€ / vehicle) - Petrol - Diesel	N/A N/A	2013 2139	1563 1661	TNO report, California EPA, press search, expert interviews

Contents

- Executive summary (key insights)
- Sector detail
- Assumptions and methodology
 - Overall
 - Power
 - Transport
 - Buildings
 - Industry
 - Agriculture
 - LULUCF

Buildings Sector background

- Buildings includes energy use in both residential and commercial buildings
 - Residential buildings include both single family homes and apartment buildings
 - Commercial/public buildings include warehousing, food service, education, lodging, malls, offices and hospitals
- Emissions in the reference case include only direct emissions (i.e. those fuels burned onsite e.g. coal) with indirect emissions (from electricity) accounted for in the power sector. However abatement opportunities include those arising from indirect emissions (e.g. lighting) and thus the abatement potential includes both indirect and direct abatement potential
 - The indirect abatement potential assumes abatement based on the marginal pre abatement electrical emissions intensity
 - The majority of abatement opportunities in the buildings sector are at negative or very low life-cycle cost
 - Many of the negative cost abatement opportunities are not realised under business as usual due to misaligned incentives (e.g. principal agent issues), high perceived consumer discount rates and programme costs
- Abatement opportunities fall into six broad categories
 - New build efficiency opportunities
 - Retrofit building envelope
 - High efficiency lighting and lighting controls
 - Energy efficient electronics and appliances
 - Retrofit water heating
 - Retrofit HVAC (Heating, ventilation and air conditioning systems)
- All abatement measures considered in this sector assume no impact on end-user comfort; behavioural changes would yield additional abatement potential

Buildings General assumptions

BAU	Details and assumptions	Values			Source
		2005	2020	2030	
Residential	Floorspace (million m2) Fuel	161	198	215	MGI Baseline – 'National energy
	- Electricity (million MWh)	8	10	11	forecasts'
	- Gas (million MWh)	7	8	8	
	- Oil (million MWh)	14	18	19	
	- Coal (million MWh)	3	1	0	
	- Other (million MWh)	3	2	1	
	End use of electricity				SEI "Energy in the residential
	- Space heating (%)	14	N/A	N/A	sector
	- Space cooling (%)		N/A	N/A	
	- Water neating (%)	23	N/A	N/A	
	- Lighting (%)	20	N/A	N/A	
	- Appliances (%)	20	N/A N/A	N/A	
	- Cooking (%)	12	N/A	N/A	
Commercial	Floorspace (million m2)	83	92	115	Scaled down from communities.gov.uk
	E				
	Fuel		11	10	SEL Receive (National energy
	- Electricity (million mWh)	9	0	12	SEI Basellile – National energy
	- Oil (million mWb)	8	9	12 01	
	- Coal (million mW/b)	0	0	0	2030)
	- Other (million mWh)	Ő	0	0	
	End use of energy	Ĩ	Ũ	J.	
	- HVAC and water heating	50	50	50	
	- Other	50	50	50	

1 No decrease assumed after 2025 (2025 figure 0.3 mWh)

Buildings Residential lever assumptions

Lever	Details and assumptions	Values			Source
		2005	2020	2030	
New build efficiency package	 Volume Assumes passive house standard (kWh / m2) Penetration (% of new builds that year)¹ 	N/A 0	40 90	40 90	 BER; Interviews, SEI, Dept of Environment, CIF, Dalkia
	 Cost Cost premium on new buildings (EUR / m2)² 	N/A	230	230	
Retrofit building package, level 1 and level 2	 Volume Level 1 retrofit energy efficiency improvement (kWh) Penetration (%) Package 2 retrofit (kWh) Penetration (%) Cost Level 1 retrofit cost (EUR / m2) Level 2 retrofit cost (EUR / m2) 	25 0 25 0 35 77	25 40 25 28 35 77	25 80 25 59 35 77	 BER; Interviews, SEI, Dept of Environment, CIF, Dalkia

1 Penetration begins with 15% in 2010 increasing to 90% in 2020

2 Based on data from DCENR for cost premium for building at 60 kWI/ m2 vs 150 kWI/m2, and extrapolated for additional 20 kWI/m2 improvement to 40 kW/m2

Buildings Residential lever assumptions

Lever	Details and assumptions	Values			Source
		2005	2020	2030	
Retrofit HVAC, residential	 Volume Savings potential for standard gas / oil heaters through improved technology and proper sizing - not included in other heating opportunities (%) Additional penetration in abatement case (%) Savings potential for electric heat pump compared to electric resistance heating (%) Additional penetration in abatement case (%) Additional penetration in abatement case (%) HVAC maintenance savings potential from proper duct insulation and proper maintenance (%) Additional penetration in abatement case (%) Cost Premium for high efficiency gas / oil model that covers 130 sq. meter house (EUR) Duct insulation / maintenance for 130 sq. meter house(EUR) 	19 0 50 15 0 500 2000 630	19 50 50 61 15 17 500 2000 630	19 70 50 52 15 63 500 2000 630	 Energy Star; Vendor interviews Penetration estimates from LBNL DOE / EERE Expert interviews
Retrofit water heating systems	 Volume Maximum solar capacity is installed by 2030. 10% solar penetration, with remainder using most efficient technology (heat pump or HE gas) Cost Solar water prices drop at 2.3% CAGR, based on historic improvement form 1984-2004 (EUR) 	See deta assump 4800	ails and tions 3300	2600	 ACCEE; Eco-hot water report for EC; Frost and Sullivan (US); NREL Vendor interviews; Fuji Keizai

Buildings Residential lever assumptions

Lever	Details and assumptions	Values			Source
		2005	2020	2030	
New and retrofit lighting systems	 Volume lumens / W: Incandescent CFL LED Reference case CFL penetration (%) In abatement case, assume full remaining share of incandescents switch to LEDs, and full remaining share of CFLs switch to LEDs Lighting control systems Savings potential in new build (%) Savings potential in retrofit (%) Penetration (%) Cost for new build (EUR / m2) Cost for retrofit is (EUR / m2)	12 60 75 13 50 29 0 3 11	12 60 150 27 50 29 22 3 11	12 60 150 43 50 29 36 3 11	 IEA; Daiwa; Rubenstein, et al Calculations from power sector
New and "retrofit" appliances and electronics	 Volume HE consumer electronics saving potential (%) Package of certified appliances savings potential (%) Penetration (%) Cost Electronics: price premium for small devices (EUR) Appliances: price premiums for HE devices (%) 	38 35 0 1 12	38 35 41 1 12	38 35 57 1 12	 ACEEE; LBNL; Data received directly from Energy Star programme; UN, CEA Industry data 2007 and 2008; McKinsey work on power packs / consumer electronics IEA

Buildings Commercial lever assumptions

Lever	Details and assumptions	Values			Source
		2005	2020	2030	
New build efficiency package	 Volume Savings potential (kWh / m2) Penetration (%) 	60 0	60 81	60 90	 BER; Interviews, SEI, Dept of Environment, CIF, Dalkia
	Cost Cost premium on new builds (EUR / m2)	35	35	35	
Retrofit building package	 Volume Savings potential assumed 20% improvement in energy efficiency (from an average of ~250 kWh / m2) Penetration (%) 	50 0	50 40	50 80	 BER; Interviews, SEI, Dept of Environment, CIF, Dalkia
	Cost Cost premium on new builds (EUR / m2)	45	45	45	
Buildings Commercial lever assumptions

Lever	Details and assumptions	Values			Source
		2005	2020	2030	
Retrofit HVAC systems and controls	 Volume HVAC system retrofit savings potential (%) HVAC controls potential(%) Penetration (%) 	13 15 0	19 15 46	20 15 85	 EIA, LBNL Vendor interviews Industry and academic expert interview University of Texas; vendor interviews
	 Cost Premium for every 5 tonnes (~17000 W) of capacity installed (EUR) Cost for retrofit control system in 1700 m2 building 	500 5000	500 5000	500 5000	
Retrofit water heating systems	 Volume Assume that maximum solar capacity is installed by 2030 (%) No fuel shift, but shift to most efficient technology within fuel type (condensing gas or electric heat pump) for remainder Cost Solar water heater learning rate based on 18% improvement in solar technology from 1950-2000 (EUR) 	0 4800	10 3300	20 2600	 ACCEE; Eco-hot water report for EC; Frost and Sullivan (US); NREL Vendor interviews; Fuji Keizai Energy Information Administration (2004)

Buildings Commercial lever assumptions

Lever	Details and assumptions	Values	Values		Source
		2005	2020	2030	
New and retrofit lighting systems	 Volume Reference case CFL penetration (%) In abatement case, assume full remaining share of incandescents switch to LEDS, and full remaining share of CFLs switch to LEDs. Lighting control systems Savings potential in new build (%) Savings potential in retrofit (%) Penetration (%) Cost Cost for new build (EUR / m2) Cost for retrofit is (EUR / m2) 	13 50 29 0 3 11	27 50 29 22 3 11	43 50 29 36 3 11	 IEA; Daiwa; IEA presentation Rubenstein, et al Calculations from power sector
New and "retrofit" appliances and electronics	 Volume Savings potential in office electronics (%) Savings potential in commercial refrigerators (%) Penetration (%) Cost Price premium per item for high efficiency charging devices and reduction in standby loss (EUR) Premium for every 0.65 sq. meter of high efficiency refrigeration area (EUR) 	48 17 0 1.5 19	48 17 33 1.5 19	48 17 43 1.5 19	 LBNL Energy Star calculators; McKinsey document on power packs / charging

Contents

- Executive summary (key insights)
- Sector detail
- Assumptions and methodology
 - Overall
 - Power
 - Transport
 - Buildings
 - Industry
 - Agriculture
 - LULUCF

Cement and other industry Cement calculation methodology

Overall

- Reference generation is based on the clinker or fuel being replaced relative to the BAU reference scenario
- Abatement potential of individual levers is calculated based on differential between overall industry emissions in reference case and abatement case

Volume Potential abatement = volume for lever X (tCO ₂ e)	Total reference case emissions - (tCO ₂ e)	Abatement case emissions for lever X (tCO ₂ e)
Cost Abatement cost	Cost of production with abatement (€ / tonne)	Cost of production under reference case (€ / tonne)
(€ / tCO ₂ e)	 Reference case emission intensity (tCO₂e / tonne) 	Abatement case emission - intensity (tCO ₂ e / tonne)

Lever	Details and assumptions	Values			Source
		2005	2020	2030	
Clinker substitution by limestone and	 Overall Assumes all available flyash is already used Assumes no limestone capacity constraints 				
nyasn	Volume Total cement production (Mt) BAU substitution by limestone & flyash (%) Abatement substitution by limestone & flyash (%) Current usage of available flyash by cement (%) Flyash from coal-fired powergen (t/MWh)	5.25 14 20 100 0.0692	5.59 14 20 100 0.0692	5.66 14 20 100 0.0692	Euroconstruct, projected at ESRI house completion rates Irish industry experts Irish industry experts Irish industry experts OECD industry estimate
	Cost Flyash unit cost (€ / t) Limestone unit cost (€ / t) Flyash handling capacity cost (€ / tonne) Flyash transport unit cost (€ / tonne)	1.5 1.5 10 13.5	1.5 1.5 10 13.5	1.5 1.5 10 13.5	Irish industry experts Irish industry experts OECD industry estimate OECD industry estimate
Clinker substitution by slag	 Overall Assumes no capacity constraints Current imports are sufficient to cover demand if abatement implementation had been achieved in 2005 Transportation costs not included 				
	Volume Total cement production (Mt) BAU clinker substitution by slag (%) Abatement clinker substitution by slag (%)	5.25 0 0	5.59 0 7	5.66 0 7	Euroconstruct, projected at ESRI house completion rates Irish industry experts Irish industry experts
	Cost Euro per Tonne imported	_20	20	20	Industry representatives

Lever	Details and assumptions	Values			Source
		2005	2020	2030	
Alternative fuels: Waste	 Overall Assumes no capacity or licensing constraints in 2030 				
	Volume BAU use of alternative fuels: fossil waste (%) BAU use of alternative fuels: MBM (%) Abatement use of alternative fuels: all waste (%)	0 2 2	0 5 20	0 5 20	Irish industry experts Irish industry experts Irish industry experts
	Cost Fuel handling capacity cost (€ / tonne)	200	200	200	OECD European estimate
Alternative fuels: Biomass	 Overall Assumes no capacity or licensing constraints in 2030 				
	Volume BAU use of alternative fuels: biomass (%) Abatement use of alternative fuels: biomass (%)	0 0	0 15	0 25	Irish industry experts Irish industry experts
	Cost Biomass cost (€ / gigajoule)	6.95	6.95	6.95	Bord na Mona

Lever	Details and assumptions	Values			Source
		2005	2020	2030	
Waste heat recovery	 Overall Assumes no capacity for implementation given modern equipment in newly built Irish plants 				
	Volume Incremental possibility of waste heat recovery	0	0	0	Irish industry experts
	Cost Waste heat recovery capacity cost (€ / tonne clinker)	12.9	12.9	12.9	Global industry research
Post- combustion CCS	 Overall Assumes no capacity for implementation given minimal probability of constructing a new plant in Ireland before 2030 				
	Volume BAU use of CCS (%) Abatement use of CCS (%)	0 0	0 0	0 0	Irish industry experts
	Cost Capacity cost (€ / t clinker)	600	300	200	Global industry research

Lever	Details and assumptions	Values			Source
Process optimisation	 Overall Assumes uniform distribution of improvements across industries 		2020	2030	
	Volume Incremental improvement from full implementation (%) Implementation rate (%)	0 0	5 100	15 100	Global industry research
	Cost Implementation cost (€ / tonne CO ₂ e)	20	20	20	Global industry research
Motor systems efficiency	 Overall Assumes uniform distribution of improvements across industries 				
	Volume Energy savings from full implementation (%)	10	10	10	Global industry research
	Cost Implementation cost, € / MWh	50	50	50	Global industry research

Lever	Details and assumptions	Values			Source
		2005	2020	2030	
СНР	 Overall Assumes uniform distribution of improvements across industries Assumes 80% thermal efficiency 				
	Volume Savings in direct power spend with CHP (%) Implementation rate (%) Lifespan of average install (years)	20 0 15	20 10	20 15	Irish industry experts
	Cost Capital costs, m € / MW Operations and Maintenance, € / MWh	1.2 7.30	1.2 7.30	1.2 7.30	Irish industry experts US EPA - \$10 /MWh converted to EUR

Contents

- Executive summary (key insights)
- Sector detail
- Assumptions and methodology
 - Overall
 - Power
 - Transport
 - Buildings
 - Industry
 - Agriculture
 - LULUCF

Lever	Details and assumptions	Values			Source
		2005	2020	2030	
Cropland: no-till, reduced till	 Overall Low implementation is achievable in Ireland due to stony soils and small size of individual fields, which require more ploughing Tillage changes only apply to cereals crops 				
Cropland: no-till	Volume Cereals area ('000 hectares, excl. fruit & horticulture) Potential emissions reduction (t $CO_2e / ha / yr$) Max implementation rate (%)	279.8 0.25 0	275.3 0.25 4	270.3 0.25 4	CSO: 2005; Teagasc: cereal rate of decline to 2020; CAGR to 2030 Teagasc Teagasc
	Cost Savings on labour, machinery; lost revenue of straw left on land (otherwise sold for mushroom fields), and of lower yields; expense on herbicides and seed Net cost	20	20	20	Teagasc
Cropland: reduced till & residue management	Volume Cereals area ('000 hectares, excl. fruit & horticulture) Potential emissions reduction (t CO ₂ e / ha / yr) Max implementation rate (%)	279.8 0.33 10	275.3 0.33 18	270.3 0.33 25	CSO: 2005; Teagasc: cereal rate of decline to 2020; CAGR to 2030 Teagasc Teagasc
	Cost Savings on labour, machinery; lost revenue of straw left on land (otherwise sold for mushroom fields), and of lower yields; expense on herbicides and seed Net cost	100	100	100	Teagasc

Lever	Details and assumptions	Values			Source
		2005	2020	2030	
Cropland: agronomy	 Overall Cover crops are only valid for certain types of main crops (potato, barley) Mustard seed is the primary cover crop available Not relevant in area used for winter crops 				
	Volume Cropland area ('000 hectares), excl. winter crops Potential emissions reduction (t CO ₂ e / ha / yr) Max implementation rate (%)	205.5 0.6 2	202.2 0.6 14	198.5 0.6 25	CSO: 2005; Teagasc: cereal rate of decline to 2020; CAGR to 2030 Teagasc Teagasc
	Cost Expense on mustard seed (€ / ha / yr)	130	130	130	Teagasc
Cropland: nutrients	 Overall Replacing nitrogen fertiliser with best-practice slurry application (trailing shoe, springtime) Limited by total national slurry supply Transportation emissions not included 				
	Volume Cropland area ('000 hectares)	279.8	275.3	270.3	CSO: 2005; Teagasc: cereal rate of decline to 2020; CAGR to 2030
	Potential emissions reduction (t CO ₂ e / ha / yr) Max implementation rate (%)	0.28 1.5	0.28 15.75	0.28 30	Department of Agriculture
	Cost Savings from less fertiliser Savings on slurry storage (€ / ha / yr)	-25	-25	-25	Teagasc, Dept. of Agriculture

Lever	Details and assumptions	Values			Source
		2005	2020	2030	
Grassland: management (planting clover as cover crop)	 Overall Most grassland is 2-3% clover; must be >20% to be considered clover pasture BAU implementation rate - 1% of land Abatement case - non-acidic soils (10% of land) 				
	Volume Grassland area ('000 hectares) Potential emissions reduction (t CO ₂ e / ha / yr) Max implementation rate (%)	3,409 0.46 1	2,856 0.46 10	2,856 0.46 10	CSO: 2005; Teagasc decline in grazing livestock numbers Department of Agriculture Teagasc, McKinsey
	Cost Expense on clover seed (€ / ha / yr) Savings on fertiliser (€ / ha / yr)	-30	-30	-30	Department of Agriculture
Grassland: nutrients (reducing fertiliser with best-practice slurry application)	 Overall Limited by total national slurry supply Max implementation 50%, remainder for management (clover) 				
	Volume Grassland area ('000 hectares) Potential emissions reduction (t CO ₂ e / ha / yr) Max implementation rate (%)	3,409 0.33 33	2,856 0.33 50	2,856 0.33 50	CSO: 2005; Teagasc decline in grazing livestock numbers Department of Agriculture Teagasc, McKinsey
	Cost Savings from less fertiliser and slurry storage (€ / ha / yr)	3	3	3	Department of Agriculture

Lever	Details and assumptions	Values			Source
		2005	2020	2030	
Livestock: dietary management	 Overall Increasing outdoor grazing period by 52 days annually (midpoint of estimates by Teagasc and Dept. of Agriculture) Concentrates already applied to significant portion of eligible cattle so excluded from calculation 				
	VolumeTotal beef cattle (m)Emissions factor – beef (t CO_2e / head)Total dairy cattle (m)Emissions factor – dairy (t CO_2e / head)Potential emissions reduction (%)Max implementation rate – beef (%)Max implementation rate – dairy (%)	5.1 1.4 1.1 2.23 4.76 0 0	4.3 1.4 1.2 2.23 4.76 60 100	4.3 1.4 1.2 2.23 4.76 60 100	Teagasc UNFCCC Teagasc UNFCCC Lovett et al., 2008, revised to midpoint of estimates by Teagasc and Dept. of Agriculture Dept. of Agriculture Dept. of Agriculture
	Cost Savings from increased productivity (€ / head / yr)	-1.35	-1.35	-1.35	Dept. of Agriculture

Contents

- Executive summary (key insights)
- Sector detail
- Assumptions and methodology
 - Overall
 - Power
 - Transport
 - Buildings
 - Industry
 - Agriculture
 - LULUCF

LULUCF **Assumptions**

Lever	Details and assumptions	Values			Source
		2005	2020	2030	
Organic soils	 Overall Restorable area excludes land that is owned by Bord na Mona, afforested, or intact Implementation rate accounts for areas adjacent to residential areas Permanence may be an issue 				
	 Volume Total peatland area ('000 hectares) Intact peatland area (15% of total) Bord na Mona area Afforested peatland area Farmed peatland area (pasture) Potential emissions reduction (t CO₂e / ha / yr) Max implementation rate (%) 	950 142.5 80 300 210 7.5 0	950 142.5 80 300 210 7.5 38	950 142.5 80 300 210 7.5 75	Connolly et al., 2007 Expert interviews Bord na Mona Expert interviews Department of Agriculture IPCC, expert interviews McKinsey
	 Cost Technical expense: blocking drainage, applying vegetation (€ / ha / yr) Annualisation period - restoration horizon (years) Cost of farmed peatland for restoration 	54.45 30 347.90	54.45 30 347.90	54.45 30 347.90	 Coillte's Bog Restoration Project, €4.2m budget for 2,571 ha Comparable to €400/ha cost for restoration and amenity creation at Tullaun Learning process with repeated efforts would imply lower annual costs IAVI Property Survey, average
	 Annualisation period - ownership of land (years) 	100	100	100	€/acre for non-residential farmland, 2008: €14,265

LULUCF Assumptions

Lever	Details and assumptions	Values		0000	Source
Afforestation	Overall Afforestation on pasture land, cropland and peatland 	-	2020	2030	Expert interviews
	 Volume Avg carbon absorption period (yrs) Avg above ground tree (tCO₂e / ha) Avg below ground tree (tCO₂e / ha) Avg deadwood / litter Avg soil (tCO₂e / ha) Maximum annual afforestation (kha / yr) Current afforestation (kha / yr) 	50 35 13 16 450 20 8	20 8	20 8	Approximation based on global estimates National forestry inventory 2007 National forestry inventory 2007 National forestry inventory 2007 National forestry inventory 2007 Expert interviews EPA
	 Cost Annuity value of Euro3500 planting cost (€ / ha) Pasture land rental cost (€ / ha / yr) Management and monitoring (€ / ha / yr) Annuity value of 500m3 timber sales 	163 300 0 -87	163 300 0 -87	163 300 0 -87	Expert interviews
Conversion of cropland to biomass use	 Volume Maximum annual conversion (ha / yr) Current conversion (ha / yr) 	1000 0	1000 0	1000 0	Expert interviews Expert interviews
	 Cost Planting cost (€ / ha) Pasture land rental cost (€ / ha / yr) Management and monitoring (€ / ha / yr) 	3500 300 0	3500 300 0	3500 300 0	Expert interviews

LULUCF **Assumptions**

Lever	Details and assumptions	Values	2020	2030	Source
Avoided deforestation	 Volume Current rate of deforestation (ha) Avoidable deforestation (ha) 	500 100	500 100	500 100	Expert interviews
	 Cost Opportunity cost of timber (€ / ha) Management and monitoring (€ / ha / yr) 	2000 500	2000 500	2000 500	Expert interviews
Change in forest management	 Volume Area available for forest management improvement ('000 ha) 	50	50	50	Expert interviews
	Cost Once-off improvement cost (€ / ha / year) Annual improvement cost (€ / ha / year) 	52 23	52 23	52 23	Global research Global research

Acknowledgements

Transport Stakeholders and sources

Stakeholders engaged

- David Browne (Dept of Transport)
- Ken Jordan (Dept of Transport)
- Brian Ó Gallachóir (UCC)
- Andrew Kelly (UCD)
- Lisa Ryan (Comhar)
- Rory O Donoghue (ESB)
- Frank Kerr (Dublin Bus)
- Ken Macken, Gemma O'Reilly, and others (EPA)
- Laura Malaguzzi Valeri (ERSI)
- George Hussey (Dept of Environment)
- Conor Molloy (Authentic)

Sources used

• 'Renault's EV Strategy' – presented at SRI Conference, Natixis, March 26th 2009

- 'Electric Cars: Plugged In', Deutsche Bank FITT Research report, June 2008
- Plug-In Hybrid Electric Vehicles and Environmentally Beneficial Load Building", Swisher et al, Rocky Mountain Institute
- Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology, Conference Paper NREL/CP-540-40485, Nov 2006

Sources used (continued)

- UNFCCC inventory 2006
- EPA projections
- Dept of CENR "Biofuels obligation scheme"
- NRA "Traffic forecast 2001 2041"
- Energy in Ireland 1990 2007
- Energy in transport 1990 2006
- European vehicle park (2008) (ACEA)
- Historic vehicle statistics CSO
- Sustainable Travel and Transport Action Plan Actions: Analysis of costs and impacts
- Smarter Travel A New Transport Policy for Ireland 2009 – 2020
- SEI "Hybrid Electric and Battery Electric Vehicles: Technology, Costs and Benefits"
- SEI "Hybrid Electric and Battery Electric Vehicles Measures to Stimulate Uptake"
- IEA / WBCSD global transport mode
- IEA fuel consumption data road (2005)
- EU directorate of energy and transport "Trends to 2030"
- EPA "End of life vehicles in Ireland"
- ESRI "Commuting Trends: Implications of Structural Economic Change"
- Biofuels in the European Union A vision for 2030 and beyond", European Commission"

Powergen Stakeholders and Sources

Stakeholders engaged

Garret Blaney, Viridian Energy
Owen Lewis, ESB
Mark O'Malley (UCD)
Jon O'Sullivan (Eirgrid)
Philip O'Donnell (Eirgrid)
Fintan Slye (Eirgrid)
Noel Regan (Bord Gais)
Aoife Duggan (Bord Gais)
Priti Dave-Stack (CER)
Eugene Coughlan (CER)
Bob Hanna (DCENR)

Buildings Stakeholders and sources

Stakeholders engaged

- Gerry Wardell (CODEMA)
- Sarah Neary (Dept of Environment)
- Stjohn O'Connor (DCENR)
- George Hussey (Dept of Environment)
- Brian Ó Gallachóir (UCC)
- Ken Macken, Gemma O'Reilly, and others (EPA)
- Laura Malaguzzi Valeri (ESRI)
- Sue Scott (ERSI)
- Una Nic Giolla Choille (DCENR)
- Peter Clinch (Dept of Taoiseach)

Sources used

• Energy Information Administration, "EIA -Technology Forecast Updates -Residential and Commercial Building Technologies – Reference Case", Navigant Consulting, Inc., Reference Number 117943, September 2004

• LBNL "Status Report- Estimates for the ENERGY STAR® Voluntary Labeling Program (LBNL 56380)

- UNFCCC inventory 2006
- EPA projections
- SEI "Energy efficiency in Ireland 2007"
- SEI "Residential energy in Ireland"
- SEI "Demand side management in Ireland"
- Ireland NEEAP
- SEI "Profiling Energy and CO2 emissions in the Services Sector"
- SEI "Energy in the Residential Sector" 2008 report
- "Development of a modelling framework in response to new European energy efficiency regulatory obligations: the Irish experience"
- Energy managers resource guide
- National energy forecasts
- National energy action plan
- National energy efficiency action plan 1990 - 2020
- Demand side management in Ireland
- SEI Energy statistics 1990 2006

Cement and other industry Stakeholders and sources

Stakeholders engaged

- Mark McAuley (Cement Manufacturers' Association)
- Colm Bannon, Martin Wills (Irish Cement)
- IBEC Environment Policy Committee members, including:
 - John Ahern (Indaver Ireland)
 - Mark Rutherford (Intel)
 - Audrey O'Shea (Glanbia)
 - Erik O'Donovan (IBEC)
- John FitzGerald, Adele Bergin (ESRI)
- Ken Macken, Eimear Cotter (EPA)
- Liam Connellan (Veolia)
- Mark Coyne (Dalkia)
- Jonathan Healy (Forfas)
- Morgan Bazilian (DCENR)

Sources used

- Stakeholder interviews
- Euroconstruct industry forecasts
- LIEN 2007 annual report
- "The Impact of CO₂ Emissions Trading on the European Cement Industry," N. Walker, 2008
- "Possibilities of reducing CO₂ emissions from energy intensive industries by the increased use of forest-derived fuels in Ireland," Walker et al
- International Cement Review, 7th ed. 2006
- "Assessment of the Potential for Geological Storage of CO₂ for the Island of Ireland," SEI, 2008
- "Co-Firing with Biomass," SEI.

Agriculture Stakeholders and sources

Stakeholders engaged

- Michael MacCarthy, Liam Kinsella, Kevin Smith, Miriam Cadwell, Gordon Conroy (Department of Agriculture)
- Gary Lanigan (Teagasc)
- Trevor Donnellan (Teagasc)
- Joseph Curtin (IIEA)
- Pete Smith (Univ. of Aberdeen)
- Thomas Ryan, Rowena Dwyer (Irish Farmers' Association)

Sources used

- US EPA Global Antropogenic Non-CO₂e Emissions, 2006
- "The Greening of Irish Agriculture," Irish Institute of European Affairs, various industry expert presentations
- IPCC, Annual Report 4, 2007
- "Greenhouse Gases in Agriculture," Teagasc, various industry expert presentations

LULUCF Stakeholders and sources

Stakeholders engaged

- Eugene Hendrick, Philip Carr (COFORD)
- Kevin Black (FERS)
- Phillip O'Brien (EPA)
- Laura Burke (EPA)
- Caitriona Douglas, Jim Ryan (NPWS)
- John Reilly, Dermott Kelly, Charlie Shier, Catherine Farrell (Bord na Mona)
- David Wilson (UCD)
- John Connolly (UCD)
- Paul Leahy (UCC)
- Pete Smith (Univ. of Aberdeen)
- Gary Lanigan (Teagasc)
- Michael MacCarthy, Liam Kinsella (Department of Agriculture)

Sources used

- National Forest Inventory, 2007
- US EPA Global Anthropogenic Non-CO₂e Emissions, 2006
- IPCC, Annual Report 4, 2007
- "Mapping Peatlands in Ireland using a Rule-Based Methodology and Digital Data," Connolly et al, 2007
- "Managed grasslands: A greenhouse gas sink or source?" Leahy et al, 2004
- "A systems approach to quantify greenhouse gas fluxes from pastoral dairy production as affected by management regime," Lovett et al, 2006
- "GHG emissions from pastoral based dairying systems", Lovett et al (2008)
- Carbon sequestration in the agricultural soils of Europe, Freibauer et al, Geoderma 122 (2004)